Uniwersytet Ślaski w Katowicach - Centralny System Uwierzytelniania
Strona główna

Analiza matematyczna z elemntami algebry

Informacje ogólne

Kod przedmiotu: W4-IN-N1-19-1-AMzEA
Kod Erasmus / ISCED: (brak danych) / (brak danych)
Nazwa przedmiotu: Analiza matematyczna z elemntami algebry
Jednostka: Wydział Nauk Ścisłych i Technicznych
Grupy: Przedm. obowiązkowe - 1 sem. informatyki /niestacj. I stopnia/
Punkty ECTS i inne: 5.00 Podstawowe informacje o zasadach przyporządkowania punktów ECTS:
  • roczny wymiar godzinowy nakładu pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się dla danego etapu studiów wynosi 1500-1800 h, co odpowiada 60 ECTS;
  • tygodniowy wymiar godzinowy nakładu pracy studenta wynosi 45 h;
  • 1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiągnięcia zakładanych efektów uczenia się;
  • tygodniowy nakład pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się pozwala uzyskać 1,5 ECTS;
  • nakład pracy potrzebny do zaliczenia przedmiotu, któremu przypisano 3 ECTS, stanowi 10% semestralnego obciążenia studenta.
Język prowadzenia: (brak danych)
Rodzaj przedmiotu:

obowiązkowy

Zajęcia w cyklu "semestr zimowy 2020/2021" (zakończony)

Okres: 2020-10-01 - 2021-02-21
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 20 godzin więcej informacji
Wykład, 20 godzin więcej informacji
Koordynatorzy: Maria Kania-Błaszczyk
Prowadzący grup: Maria Kania-Błaszczyk
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin
Sposób ustalania oceny końcowej:

Ocena końcowa modułu to średnia z pozytywnych ocen z zaliczenia i egzaminu.

Pełny opis:

1. Funkcje i ich własności: dziedzina i zbiór wartości, surjektywność, różnowartościowość, monotoniczność, okresowość, parzystość i nieparzystość, miejsca zerowe, składanie i odwracanie funkcji, funkcje elementarne.

2. Ciągi liczbowe: pojęcie granicy ciągu i jej własności, twierdzenie o trzech ciągach, związek między monotonicznością, ograniczonością i zbieżnością ciągu, twierdzenie o zbieżności do liczby Eulera.

3. Szeregi liczbowe: pojęcie zbieżności i sumy szeregu, warunek konieczny zbieżności, szeregi geometryczne i harmoniczne, wybrane kryteria zbieżności szeregów: kondensacyjne (o zagęszczeniu), Cauchy’ego, d’Alamberta, porównawcze i Leibniza.

4. Granica funkcji: pojęcie granicy funkcji w punkcie oraz w nieskończoności, twierdzenie o trzech funkcjach, granice podstawowych wyrażeń nieoznaczonych, granice związane z liczbą Eulera, granice jednostronne i ich związek z istnieniem granicy.

5. Ciągłość funkcji: pojęcie ciągłości funkcji, twierdzenia o zachowaniu ciągłości przy dokonywaniu pewnych operacji na funkcjach, związek między ciągłością i monotonicznością funkcji określonej na przedziale, twierdzenie Weierstrassa o przyjmowaniu kresów, własność Darboux.

6. Rachunek różniczkowy funkcji jednej zmiennej: pojęcie pochodnej funkcji oraz jej interpretacja geometryczna i fizyczna, związek między różniczkowalnością i ciągłością funkcji, twierdzenie o różniczkowaniu funkcji odwrotnej, pochodne funkcji elementarnych, twierdzenie o pochodnej sumy, iloczynu, ilorazu oraz złożenia funkcji, twierdzenie Lagrange’a o wartości średniej, wybrane zastosowania rachunku różniczkowego: badanie przebiegu zmienności funkcji (ekstrema lokalne, monotoniczność, punkty przegięcia i asymptoty), reguła de l’ Hospitala, twierdzenie Taylora.

7. Całka nieoznaczona: pojęcie funkcji pierwotnej i całki nieoznaczonej, całki podstawowe, twierdzenia o całkowaniu przez części i przez podstawianie, metody całkowania funkcji wymiernych (rozkład na ułamki proste).

8. Całka oznaczona: definicja całki Riemanna na przedziale zwartym i jej podstawowe własności, twierdzenia o całkowalności funkcji monotonicznych i ciągłych, wzór Newtona-Leibniza, twierdzenia o całkowaniu przez części i przez podstawianie dla całki oznaczonej, całki niewłaściwe, obliczanie pól figur płaskich i długości krzywych

9. Liczby zespolone: konstrukcja Hamiltona ciała liczb zespolonych, podstawowe operacje arytmetyczne na liczbach zespolonych, równania kwadratowe nad ciałem liczb zespolonych, moduł i sprzężenie liczby zespolonej, postać trygonometryczna liczby zespolonej, twierdzenie o potęgowaniu (Moivre’a) i pierwiastkowaniu liczb zespolonych w postaci trygonometrycznej, zasadnicze twierdzenie algebry.

10. Teoria macierzy: typy macierzy kwadratowych, dodawanie, mnożenie i transpozycja macierzy, definicja wyznacznika i rzędu macierzy oraz metody ich obliczania, odwracalność macierzy i metody znajdowania macierzy odwrotnej, wektory i wartości własne, przykłady przekształceń afinicznych (w postaci macierzowej) i ich składanie.

11. Układy równań liniowych: zapis macierzowy, klasyfikacja układów równań liniowych ze względu na liczbę rozwiązań, twierdzenie Kroneckera – Capellego, metody rozwiązywania układów równań liniowych: eliminacja Gaussa i twierdzenie Cramera.

12. Równania różniczkowe zwyczajne: równanie o rozdzielonych zmiennych i wybrane równania do niego sprowadzalne.

Zajęcia w cyklu "semestr zimowy 2021/2022" (zakończony)

Okres: 2021-10-01 - 2022-02-20
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 20 godzin więcej informacji
Wykład, 20 godzin więcej informacji
Koordynatorzy: Maria Kania-Błaszczyk
Prowadzący grup: Maria Kania-Błaszczyk
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin
Sposób ustalania oceny końcowej:

Ocena końcowa modułu to średnia z pozytywnych ocen z zaliczenia i egzaminu.

Pełny opis:

1. Funkcje i ich własności: dziedzina i zbiór wartości, surjektywność, różnowartościowość, monotoniczność, okresowość, parzystość i nieparzystość, miejsca zerowe, składanie i odwracanie funkcji, funkcje elementarne.

2. Ciągi liczbowe: pojęcie granicy ciągu i jej własności, twierdzenie o trzech ciągach, związek między monotonicznością, ograniczonością i zbieżnością ciągu, twierdzenie o zbieżności do liczby Eulera.

3. Szeregi liczbowe: pojęcie zbieżności i sumy szeregu, warunek konieczny zbieżności, szeregi geometryczne i harmoniczne, wybrane kryteria zbieżności szeregów: kondensacyjne (o zagęszczeniu), Cauchy’ego, d’Alamberta, porównawcze i Leibniza.

4. Granica funkcji: pojęcie granicy funkcji w punkcie oraz w nieskończoności, twierdzenie o trzech funkcjach, granice podstawowych wyrażeń nieoznaczonych, granice związane z liczbą Eulera, granice jednostronne i ich związek z istnieniem granicy.

5. Ciągłość funkcji: pojęcie ciągłości funkcji, twierdzenia o zachowaniu ciągłości przy dokonywaniu pewnych operacji na funkcjach, związek między ciągłością i monotonicznością funkcji określonej na przedziale, twierdzenie Weierstrassa o przyjmowaniu kresów, własność Darboux.

6. Rachunek różniczkowy funkcji jednej zmiennej: pojęcie pochodnej funkcji oraz jej interpretacja geometryczna i fizyczna, związek między różniczkowalnością i ciągłością funkcji, twierdzenie o różniczkowaniu funkcji odwrotnej, pochodne funkcji elementarnych, twierdzenie o pochodnej sumy, iloczynu, ilorazu oraz złożenia funkcji, twierdzenie Lagrange’a o wartości średniej, wybrane zastosowania rachunku różniczkowego: badanie przebiegu zmienności funkcji (ekstrema lokalne, monotoniczność, punkty przegięcia i asymptoty), reguła de l’ Hospitala, twierdzenie Taylora.

7. Całka nieoznaczona: pojęcie funkcji pierwotnej i całki nieoznaczonej, całki podstawowe, twierdzenia o całkowaniu przez części i przez podstawianie, metody całkowania funkcji wymiernych (rozkład na ułamki proste).

8. Całka oznaczona: definicja całki Riemanna na przedziale zwartym i jej podstawowe własności, twierdzenia o całkowalności funkcji monotonicznych i ciągłych, wzór Newtona-Leibniza, twierdzenia o całkowaniu przez części i przez podstawianie dla całki oznaczonej, całki niewłaściwe, obliczanie pól figur płaskich i długości krzywych

9. Liczby zespolone: konstrukcja Hamiltona ciała liczb zespolonych, podstawowe operacje arytmetyczne na liczbach zespolonych, równania kwadratowe nad ciałem liczb zespolonych, moduł i sprzężenie liczby zespolonej, postać trygonometryczna liczby zespolonej, twierdzenie o potęgowaniu (Moivre’a) i pierwiastkowaniu liczb zespolonych w postaci trygonometrycznej, zasadnicze twierdzenie algebry.

10. Teoria macierzy: typy macierzy kwadratowych, dodawanie, mnożenie i transpozycja macierzy, definicja wyznacznika i rzędu macierzy oraz metody ich obliczania, odwracalność macierzy i metody znajdowania macierzy odwrotnej, wektory i wartości własne, przykłady przekształceń afinicznych (w postaci macierzowej) i ich składanie.

11. Układy równań liniowych: zapis macierzowy, klasyfikacja układów równań liniowych ze względu na liczbę rozwiązań, twierdzenie Kroneckera – Capellego, metody rozwiązywania układów równań liniowych: eliminacja Gaussa i twierdzenie Cramera.

12. Równania różniczkowe zwyczajne: równanie o rozdzielonych zmiennych i wybrane równania do niego sprowadzalne.

Zajęcia w cyklu "semestr zimowy 2022/2023" (zakończony)

Okres: 2022-10-01 - 2023-02-26
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 20 godzin więcej informacji
Wykład, 20 godzin więcej informacji
Koordynatorzy: Maria Kania-Błaszczyk
Prowadzący grup: Maria Kania-Błaszczyk
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin
Sposób ustalania oceny końcowej:

Ocena końcowa modułu to średnia z pozytywnych ocen z zaliczenia i egzaminu.

Pełny opis:

1. Funkcje i ich własności: dziedzina i zbiór wartości, surjektywność, różnowartościowość, monotoniczność, okresowość, parzystość i nieparzystość, miejsca zerowe, składanie i odwracanie funkcji, funkcje elementarne.

2. Ciągi liczbowe: pojęcie granicy ciągu i jej własności, twierdzenie o trzech ciągach, związek między monotonicznością, ograniczonością i zbieżnością ciągu, twierdzenie o zbieżności do liczby Eulera.

3. Szeregi liczbowe: pojęcie zbieżności i sumy szeregu, warunek konieczny zbieżności, szeregi geometryczne i harmoniczne, wybrane kryteria zbieżności szeregów: kondensacyjne (o zagęszczeniu), Cauchy’ego, d’Alamberta, porównawcze i Leibniza.

4. Granica funkcji: pojęcie granicy funkcji w punkcie oraz w nieskończoności, twierdzenie o trzech funkcjach, granice podstawowych wyrażeń nieoznaczonych, granice związane z liczbą Eulera, granice jednostronne i ich związek z istnieniem granicy.

5. Ciągłość funkcji: pojęcie ciągłości funkcji, twierdzenia o zachowaniu ciągłości przy dokonywaniu pewnych operacji na funkcjach, związek między ciągłością i monotonicznością funkcji określonej na przedziale, twierdzenie Weierstrassa o przyjmowaniu kresów, własność Darboux.

6. Rachunek różniczkowy funkcji jednej zmiennej: pojęcie pochodnej funkcji oraz jej interpretacja geometryczna i fizyczna, związek między różniczkowalnością i ciągłością funkcji, twierdzenie o różniczkowaniu funkcji odwrotnej, pochodne funkcji elementarnych, twierdzenie o pochodnej sumy, iloczynu, ilorazu oraz złożenia funkcji, twierdzenie Lagrange’a o wartości średniej, wybrane zastosowania rachunku różniczkowego: badanie przebiegu zmienności funkcji (ekstrema lokalne, monotoniczność, punkty przegięcia i asymptoty), reguła de l’ Hospitala, twierdzenie Taylora.

7. Całka nieoznaczona: pojęcie funkcji pierwotnej i całki nieoznaczonej, całki podstawowe, twierdzenia o całkowaniu przez części i przez podstawianie, metody całkowania funkcji wymiernych (rozkład na ułamki proste).

8. Całka oznaczona: definicja całki Riemanna na przedziale zwartym i jej podstawowe własności, twierdzenia o całkowalności funkcji monotonicznych i ciągłych, wzór Newtona-Leibniza, twierdzenia o całkowaniu przez części i przez podstawianie dla całki oznaczonej, całki niewłaściwe, obliczanie pól figur płaskich i długości krzywych

9. Liczby zespolone: konstrukcja Hamiltona ciała liczb zespolonych, podstawowe operacje arytmetyczne na liczbach zespolonych, równania kwadratowe nad ciałem liczb zespolonych, moduł i sprzężenie liczby zespolonej, postać trygonometryczna liczby zespolonej, twierdzenie o potęgowaniu (Moivre’a) i pierwiastkowaniu liczb zespolonych w postaci trygonometrycznej, zasadnicze twierdzenie algebry.

10. Teoria macierzy: typy macierzy kwadratowych, dodawanie, mnożenie i transpozycja macierzy, definicja wyznacznika i rzędu macierzy oraz metody ich obliczania, odwracalność macierzy i metody znajdowania macierzy odwrotnej, wektory i wartości własne, przykłady przekształceń afinicznych (w postaci macierzowej) i ich składanie.

11. Układy równań liniowych: zapis macierzowy, klasyfikacja układów równań liniowych ze względu na liczbę rozwiązań, twierdzenie Kroneckera – Capellego, metody rozwiązywania układów równań liniowych: eliminacja Gaussa i twierdzenie Cramera.

12. Równania różniczkowe zwyczajne: równanie o rozdzielonych zmiennych i wybrane równania do niego sprowadzalne.

Zajęcia w cyklu "semestr zimowy 2023/2024" (zakończony)

Okres: 2023-10-01 - 2024-02-18
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 20 godzin więcej informacji
Wykład, 20 godzin więcej informacji
Koordynatorzy: Maria Kania-Błaszczyk
Prowadzący grup: Maria Kania-Błaszczyk
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin
Sposób ustalania oceny końcowej:

Ocena końcowa modułu to średnia z pozytywnych ocen z zaliczenia i egzaminu.

Pełny opis:

1. Funkcje i ich własności: dziedzina i zbiór wartości, surjektywność, różnowartościowość, monotoniczność, okresowość, parzystość i nieparzystość, miejsca zerowe, składanie i odwracanie funkcji, funkcje elementarne.

2. Ciągi liczbowe: pojęcie granicy ciągu i jej własności, twierdzenie o trzech ciągach, związek między monotonicznością, ograniczonością i zbieżnością ciągu, twierdzenie o zbieżności do liczby Eulera.

3. Szeregi liczbowe: pojęcie zbieżności i sumy szeregu, warunek konieczny zbieżności, szeregi geometryczne i harmoniczne, wybrane kryteria zbieżności szeregów: kondensacyjne (o zagęszczeniu), Cauchy’ego, d’Alamberta, porównawcze i Leibniza.

4. Granica funkcji: pojęcie granicy funkcji w punkcie oraz w nieskończoności, twierdzenie o trzech funkcjach, granice podstawowych wyrażeń nieoznaczonych, granice związane z liczbą Eulera, granice jednostronne i ich związek z istnieniem granicy.

5. Ciągłość funkcji: pojęcie ciągłości funkcji, twierdzenia o zachowaniu ciągłości przy dokonywaniu pewnych operacji na funkcjach, związek między ciągłością i monotonicznością funkcji określonej na przedziale, twierdzenie Weierstrassa o przyjmowaniu kresów, własność Darboux.

6. Rachunek różniczkowy funkcji jednej zmiennej: pojęcie pochodnej funkcji oraz jej interpretacja geometryczna i fizyczna, związek między różniczkowalnością i ciągłością funkcji, twierdzenie o różniczkowaniu funkcji odwrotnej, pochodne funkcji elementarnych, twierdzenie o pochodnej sumy, iloczynu, ilorazu oraz złożenia funkcji, twierdzenie Lagrange’a o wartości średniej, wybrane zastosowania rachunku różniczkowego: badanie przebiegu zmienności funkcji (ekstrema lokalne, monotoniczność, punkty przegięcia i asymptoty), reguła de l’ Hospitala, twierdzenie Taylora.

7. Całka nieoznaczona: pojęcie funkcji pierwotnej i całki nieoznaczonej, całki podstawowe, twierdzenia o całkowaniu przez części i przez podstawianie, metody całkowania funkcji wymiernych (rozkład na ułamki proste).

8. Całka oznaczona: definicja całki Riemanna na przedziale zwartym i jej podstawowe własności, twierdzenia o całkowalności funkcji monotonicznych i ciągłych, wzór Newtona-Leibniza, twierdzenia o całkowaniu przez części i przez podstawianie dla całki oznaczonej, całki niewłaściwe, obliczanie pól figur płaskich i długości krzywych

9. Liczby zespolone: konstrukcja Hamiltona ciała liczb zespolonych, podstawowe operacje arytmetyczne na liczbach zespolonych, równania kwadratowe nad ciałem liczb zespolonych, moduł i sprzężenie liczby zespolonej, postać trygonometryczna liczby zespolonej, twierdzenie o potęgowaniu (Moivre’a) i pierwiastkowaniu liczb zespolonych w postaci trygonometrycznej, zasadnicze twierdzenie algebry.

10. Teoria macierzy: typy macierzy kwadratowych, dodawanie, mnożenie i transpozycja macierzy, definicja wyznacznika i rzędu macierzy oraz metody ich obliczania, odwracalność macierzy i metody znajdowania macierzy odwrotnej, wektory i wartości własne, przykłady przekształceń afinicznych (w postaci macierzowej) i ich składanie.

11. Układy równań liniowych: zapis macierzowy, klasyfikacja układów równań liniowych ze względu na liczbę rozwiązań, twierdzenie Kroneckera – Capellego, metody rozwiązywania układów równań liniowych: eliminacja Gaussa i twierdzenie Cramera.

12. Równania różniczkowe zwyczajne: równanie o rozdzielonych zmiennych i wybrane równania do niego sprowadzalne.

Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Ślaski w Katowicach.
kontakt deklaracja dostępności USOSweb 7.0.3.0 (2024-03-22)